Containing internal diffusion limited aggregation

Hugo Duminil-Copin, Cyrille Lucas, Ariel Yadin, Amir Yehudayoff

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Internal Diffusion Limited Aggregation (IDLA) is a model that describes the growth of a random aggregate of particles from the inside out. Shellef proved that IDLA processes on supercritical percolation clusters of integer-lattices fill Euclidean balls, with high probability. In this article, we complete the picture and prove a limit-shape theorem for IDLA on such percolation clusters, by providing the corresponding upper bound. The technique to prove upper bounds is new and robust: it only requires the existence of a "good" lower bound. Specifically, this way of proving upper bounds on IDLA clusters is more suitable for random environments than previous ways, since it does not harness harmonic measure estimates.

اللغة الأصليةإنجليزيّة أمريكيّة
رقم المقال50
دوريةElectronic Communications in Probability
مستوى الصوت18
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 9 يوليو 2013

All Science Journal Classification (ASJC) codes

  • !!Statistics and Probability
  • !!Statistics, Probability and Uncertainty

بصمة

أدرس بدقة موضوعات البحث “Containing internal diffusion limited aggregation'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا