ملخص
Let M be a compact symplectic manifold endowed with a Hamiltonian action of a compact torus T with a moment map μ. Suppose there exists a symplectic involution θ : M → M, such that μ ◦ θ = −μ. Assuming that 0 is a regular value of μ, we calculate the character of the action of θ on the cohomology of M in terms of the trace of the action of θ on the symplectic reduction μ−1(0)/T of M. This result generalizes a theorem of R. Stanley, who considered the case when M was a toric variety and dim T = ½ dimℝM.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 325-340 |
عدد الصفحات | 16 |
دورية | Journal of Symplectic Geometry |
مستوى الصوت | 14 |
رقم الإصدار | 1 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2016 |
All Science Journal Classification (ASJC) codes
- !!Geometry and Topology