Clustering-Driven Deep Embedding With Pairwise Constraints

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Recently, there has been increasing interest to leverage the competence of neural networks to analyze data. In particular, new clustering methods that employ deep embeddings have been presented. In this paper, we depart from centroid-based models and suggest a new framework, called Clustering-driven deep embedding with PAirwise Constraints (CPAC), for nonparametric clustering using a neural network. We present a clustering-driven embedding based on a Siamese network that encourages pairs of data points to output similar representations in the latent space. Our pair-based model allows augmenting the information with labeled pairs to constitute a semi-supervised framework. Our approach is based on analyzing the losses associated with each pair to refine the set of constraints. We show that clustering performance increases when using this scheme, even with a limited amount of user queries. We demonstrate how our architecture is adapted for various types of data and present the first deep framework to cluster three-dimensional (3-D) shapes.

اللغة الأصليةالإنجليزيّة
رقم المقال8739140
الصفحات (من إلى)16-27
عدد الصفحات12
دوريةIEEE Computer Graphics and Applications
مستوى الصوت39
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يوليو 2019

All Science Journal Classification (ASJC) codes

  • !!Software
  • !!Computer Graphics and Computer-Aided Design

بصمة

أدرس بدقة موضوعات البحث “Clustering-Driven Deep Embedding With Pairwise Constraints'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا