AnySURF: Flexible local features computation

Eran Sadeh-Or, Gal A. Kaminka

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرفصلمراجعة النظراء


Many vision-based tasks for autonomous robotics are based on feature matching algorithms, finding point correspondences between two images. Unfortunately, existing algorithms for such tasks require significant computational resources and are designed under the assumption that they will run to completion and only then return a complete result. Since partial results-a subset of all features in the image-are often sufficient, we propose in this paper a computationally-flexible algorithm, where results monotonically increase in quality, given additional computation time. The proposed algorithm, coined AnySURF (Anytime SURF), is based on the SURF scale- and rotation-invariant interest point detector and descriptor. We achieve flexibility by re-designing several major steps, mainly the feature search process, allowing results with increasing quality to be accumulated. We contrast different design choices for AnySURF and evaluate the use of AnySURF in a series of experiments. Results are promising, and show the potential for dynamic anytime performance, robust to the available computation time.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفRoboCup 2011
العنوان الفرعي لمنشور المضيفRobot Soccer World Cup XV
المحررونThomas Rofer, Norbert Michael Mayer, Jesus Savage, Uluc Saranli
عدد الصفحات12
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2012

سلسلة المنشورات

الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
مستوى الصوت7416 LNCS

All Science Journal Classification (ASJC) codes

  • !!Theoretical Computer Science
  • !!General Computer Science


أدرس بدقة موضوعات البحث “AnySURF: Flexible local features computation'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا