Affine-invariant geodesic geometry of deformable 3D shapes

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


Natural objects can be subject to various transformations yet still preserve properties that we refer to as invariants. Here, we use definitions of affine-invariant arclength for surfaces in R3 in order to extend the set of existing non-rigid shape analysis tools. We show that by re-defining the surface metric as its equi-affine version, the surface with its modified metric tensor can be treated as a canonical Euclidean object on which most classical Euclidean processing and analysis tools can be applied. The new definition of a metric is used to extend the fast marching method technique for computing geodesic distances on surfaces, where now, the distances are defined with respect to an affine-invariant arclength. Applications of the proposed framework demonstrate its invariance, efficiency, and accuracy in shape analysis.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)692-697
عدد الصفحات6
دوريةComputers and Graphics (Pergamon)
مستوى الصوت35
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - يونيو 2011

All Science Journal Classification (ASJC) codes

  • !!Software
  • !!General Engineering
  • !!Signal Processing
  • !!Human-Computer Interaction
  • !!Computer Vision and Pattern Recognition
  • !!Computer Graphics and Computer-Aided Design


أدرس بدقة موضوعات البحث “Affine-invariant geodesic geometry of deformable 3D shapes'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا