About reducing integro-differential equations with infinite limits of integration to systems of ordinary differential equations

Yakov Goltser, Alexander Domoshnitsky

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

The purpose of this paper is to propose a method for studying integro-differential equations with infinite limits of integration. The main idea of this method is to reduce integro-differential equations to auxiliary systems of ordinary differential equations. Results: a scheme of the reduction of integro-differential equations with infinite limits of integration to these auxiliary systems is described and a formula for representation of bounded solutions, based on fundamental matrices of these systems, is obtained. Conclusion: methods proposed in this paper could be a basis for the Floquet theory and studies of stability, bifurcations, parametric resonance and various boundary value problems. As examples, models of tumor-immune system interaction, hematopoiesis and plankton-nutrient interaction are considered.

اللغة الأصليةالإنجليزيّة
رقم المقال187
دوريةAdvances in Difference Equations
مستوى الصوت2013
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - يونيو 2013

All Science Journal Classification (ASJC) codes

  • !!Analysis
  • !!Algebra and Number Theory
  • !!Applied Mathematics

بصمة

أدرس بدقة موضوعات البحث “About reducing integro-differential equations with infinite limits of integration to systems of ordinary differential equations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا